虫の病気に魅せられて

(社)日本植物防疫協会研究所 岡 田 斉 夫

チョウやトンボやセミと遊んで、蝶や蛾の採集から小蛾、特に絹蛾の形態・分類を学んだ。新種の記載、種の配属替えなどを発表した（1961、1962）。農林省中国農業試験場に1961年に入って、牧草害虫相調査を分担し、中国地域内の牧草害虫を求めて遠い地まで行った。これから辞めるまでの30年あまりの間、どんな仕事をするのが良いかと考えながら、牧草害虫を採集して同定し、発表の害虫目録を作っていた。中国地域の牧草害虫として178種を発表した（1963）。

I ヨトウムシとの闘い

牧草害虫相調査の結果から、主要害虫としてハスモンヨトウ、ヨトウガ、アワヨトウなどを選び、ヨトウムシ類の生態と防除の研究に分担した。1962年のことである。当時は、中国農業試験場（鳥取県足摺市）でハスモンヨトウなどがしばしば大発生して牧草・飼料作物を食い尽くした。牛の飼がなくなってしまい、飼育に相当するような草を買って与えたという。

野外における発生調査とともにハスモンヨトウとヨトウガ幼虫にはクローバやダイズなどで飼育し、アワヨトウはグラス類で飼育した。終卵期に敗血症で死亡する個体があった。特にハスモンヨトウはその割合が高く、時期によって個体群が全滅することがあった。調べたところSerratia菌による病気であった。その後被害が高まることがあった。これは個体群の全滅は飼育虫子によるものであった。これはカイコ微粒子病の仲間である。

ヨトウムシ類をなにの葉で飼育することは大変な労力であった。毎日夕方、蚊に刺されながらクローバの葉を40分ものフィヨリの葉とした。何かいい方法はないかと苦労して人工飼料を作った。最終的には雑食性飼料類の人工飼料を作成させて特許をとった（特許第845255号、1977）。安上がりで多数の害虫が飼育できるとして各方面で使われた。

当時（1960年代）は化学合成農薬の効果試験が（社）

Have Been Attracted by Insect Infectious Diseases. By Muneo OKADA

（キーワード：虫の病気、研修ノート、核多角体病毒、効果の確認、あとがたけ付け）
そうした実験をはじめると、牧野においても植物体上で死んだ虫が目に入るようになり、生きている虫と同じくらい死んだ虫が見つかるようになった。山村にある牧野などで（広島県城北町営の大規模試地、標高500 mくらい）で7月下旬に、広島県油木町、広島市改良センター、標高400 mくらいで8月中旬に、平地では10月下旬から11月にアワロトウやイネロトウに流行病がでて驚いた。前者は梅雨の終わりごろ、しつつと降り続いていた雨があがり、新たに快晴となって太陽が照り輝いた昼間、アワロトウの大群（老齢幼虫）がイネ科栽培の地域から遠い上がって茎葉の先の方で死んでいくのを見た。昼間は地際で潜んでいるはずなのに、死ぬと間もなく白色のカビに覆われ、後に青色に変わった。昆虫病毒菌 Entomophthora 属菌のようであった。イネロトウは8月上旬にトウモロコシの葉に小孔をあけて、3・4齢幼虫が15匹ほど追い出してきて死んでいった。これは後に核多角体病ウイルス（NPV）感染とわかった。罹虫虫や病死虫を採集する場合は、必ず10個ずつ容器（小試験管など）に収納しなければならない。昆蟲病毒や病原体種が異なった場合に、結果や考察が異なることになる。

II 勉強のやり直し

昆虫の形態・分類の勉強をした者が、昆虫の病原体の研究をする事は難しいことであった。昆虫病理について勉強したいと思い、九州大学農学部生物の防除研究施設天敵微生物学部門で1966年に半年間の研修を受け、病死虫の死因診断、細菌・糸状菌・ウィルスの分離・培養・増殖、菌数計算、濃度測定、実験器具の消毒、油・有機物の除去、洗浄、乾燥、滅菌など、虫の形態や分類を研究してきた者にはできたものではなかったが、鮎沢啓夫先生、河原輝夫さん、岩花秀典さんなど6名の先
トウ幼虫に対する病原性は極めて高く、LC₅₀は2齢幼虫で10⁴個体/mlであった。環境条件と各種病原性試験においても、防除となるデータはなかった。

V 野外試験への応用は難しかった

野外にはクモ、カエル、ハチなど、各種の天敵が豊富に存在するために、またNPVは潜伏期間が長いこともあり、いきなり圃場試験を行ったのは考察が困難と考えた。①コンクリートポットの網箱試験、②圃場のダイズ1株を被覆する網箱試験で、天敵類の影響や環境影響を和らげる方法で、NPVの剤型、濃度、散布方法などとハスモンヨトウ防除効果、食害防止効果、持続効果などを確認した。その後で③圃場において、NPVの剤型、液剤の濃度、散布方法などとハスモンヨトウ防除効果、食害防止効果、残留効果、世代間持続効果試験などを実施した。圃場試験では、①圃場において防除効果調査を行うとともに、散布液が乾いた後、作物業を一定数サンプリングして室内飼育個体群に食下させ、散布NPVの作物業への着付虫、および③散布48時間後に散布区の幼虫を一定数サンプリングして室内飼育個体群で観察を行い、試験区の幼虫のNPV食下状況の調査を行った。このように三重に効果を確認する方法をとった。SINPVのハスモンヨトウ防除効果を確認した。中国政府として、内場試験のほかに中国および高知県において効果の実証試験を行った。また農林水産省植物病

(20ページからの続き)

「殺虫剤」

●イプロジオン水和剤
14215：武田ロブラール水和剤（住化武田農薬（株））
2003/12/11
●イプロジオン・イミノタジン酢酸塩水和剤
18031：ロース・ブーランディンクロップフロアブル（バイエルクロップサイエンス（株））
2003/12/25
●イプロジオン・バリダマイシン水和剤
18034：ロース・ブーランディンクロップフロアブル（バイエルクロップサイエンス（株））
2003/12/25
●チオファネートメチル粉剤
14241：トップジンM・FD（日本曹達（株））2003/12/17
●チフライミド粒剤
19857：グレーテム粒剤（ダウ・ケミカル日本（株））
2003/12/22
19858：シノノキ・グレーテム粒剤（ダウ・ケミカル日本（株））
2003/12/22
19839：日産グレーテム粒剤（日産化学工業（株））2003/12/22
●焼水和剤
14227：ガンディー（アグロカネショウ（株））2003/12/11
●ベンチアソール乳剤
15320：ブーサン（大塚化学（株））2003/12/17
●硫酸銅
13677：ダイヤケミカル粉状硫酸銅（ダイヤケミカル（株））
2003/12/10

「殺虫殺剤」

●ペンフロカルブ・インプロチオラン粒剤
18021：日農フジワンオンコール粒剤（日本農薬（株））
2003/12/16
18022：大塚フジワンオンコール粒剤（大塚化学（株））
2003/12/16
●MPP・PHC・EDDP粉剤
15336：ヤシマヒノコンピ粉剤45DL（八洲化学工業（株））
2003/12/24

「除草剤」

●アジェムルフロ・フェントラザミド・ペンスルフロメ