天敵ウィルスの利用について

アリストライフサイエンス（株）和田哲夫
アグロフロンティア部

はじめに

2003年3月、日本では顆粒病ウィルス剤としては初めてお茶の重要害虫であるチャハマキとチャノコカクモノハマキに対して「ハマキ天敵」が農薬登録された。

ウィルスというと人類にとっては災厄をもたらしたヒト病原性のウィルスのいくつかを即座に思い出すほど、現代の人間にとっては観察に深いものである。ところが、ウィルスはヒトばかりでなく、哺乳類から昆虫、果ては植物、細菌までも感染することは、生物学をかじった人間であればよく知られた事実である。そしてそのウィルス感染を防ぐ方法は、ワクチンなどを除き、いまだに人類には解明されていない現状である。本稿では、「ハマキ天敵」についてその周辺から実用性について述べる。

I パキュロウィルスとは

パキュロウィルスはウィルスの形態が選択状を呈しているためラテン語の名をいう単語 baculum から由来した命名であるが、実際の写真などによる観察では、occlusion body とよばれるタンパク質の核包体（包埋体と呼ばれる）が含まれているため、顆粒状に見えたり多面体状に見えるため顆粒病ウィルス（GV: Granulosis virus）とか核多角体ウィルス（NPV: Nuclear Polyhedrosis Virus）と呼ばれるものを含んでいる。

実際の観察では、ウィルス粒子は極めて小さく電子顕微鏡でないとその観察は困難である。顆粒病ウィルスの顆粒体は約 1 μm である。光学顕微鏡では 400 倍から 1,000 倍では砂粒を見る程度である。

またよくポリヘドロンとも呼ばれる包埋体のなかにウィルス粒子（ヴィリオン virion）という形で観察されるのが写真があるが、これはポリヘドロンを切片として観察したものである。金太郎鉄の短いものがモチに入っているような状態である。その場合金太郎の絵柄がウィルス環である。

表1 主なパキュロウィルスで実用化されているもの

<table>
<thead>
<tr>
<th>対象害虫</th>
<th>ウイルス名</th>
<th>対象</th>
<th>商品名</th>
<th>メーカー/利用国</th>
</tr>
</thead>
<tbody>
<tr>
<td>リンゴカクモノハマキ</td>
<td>Adoxophyes orana fasciata</td>
<td>AoGV</td>
<td>果樹</td>
<td>Capex</td>
</tr>
<tr>
<td>チャノコカクモノハマキ</td>
<td>Adoxophyes honmnae</td>
<td>AoGV</td>
<td>茶</td>
<td>ハマキ天敵</td>
</tr>
<tr>
<td>チャハマキ</td>
<td>Homona magnanima</td>
<td>HmGV</td>
<td>茶</td>
<td>ハマキ天敵</td>
</tr>
<tr>
<td>マイマイガ</td>
<td>Lymantria dispar</td>
<td>LdNPV</td>
<td>果樹</td>
<td>Disparvirus</td>
</tr>
<tr>
<td>シロイチモジョトウ</td>
<td>Spodoptera exigua</td>
<td>SeNPV</td>
<td>果樹</td>
<td>Spod-X</td>
</tr>
<tr>
<td>マツノキハバチ</td>
<td>Cynipidae sertifer</td>
<td>NaNPV</td>
<td>樹木</td>
<td>Neocheck-S</td>
</tr>
<tr>
<td>コドリンガ</td>
<td>Cylis pomonella</td>
<td>CpGV</td>
<td>果樹</td>
<td>Madex</td>
</tr>
<tr>
<td>クイズの黒翅目害虫</td>
<td>Anticarsia geminata</td>
<td>AgNPV</td>
<td>グアバ</td>
<td>Polygen</td>
</tr>
</tbody>
</table>

Use of AoGV and HmGV in Tea Control of Adoxophyes honnai and Homona magnanima in Tea Cultivation in Japan. By Tetsuo Wada

（キーワード: AoGV, HmGV, シラ, Homona magnanima, Adoxophyes honnai）