伝染源排除によるイネいもち病の減農薬防除

秋田県農林水産技術センター農業試験場 浪谷 賢美

はじめに

秋田県ではこれまで、イネいもち防除対策として小林が提案した発生予察技術（小林, 1984）に基づいて薬剤散布を早めるなど指導対応を図ってきた。本技術は第2世代卵に卵の伝染防止をねらいとし、例年、2～3回の散布散布を行うものである。また、使用されている薬剤変更は農薬と構成され、さらに農薬は多変数年には飛散黒も薬剤散布による予防散布に徹して被害を最小限に抑えることが容易であると言われている。しかし、1990年代以降、薬剤化・高効率化、さらには薬害整備の要望によって水田の拡大に伴って薬剤散布の変更が困難となり、散布・散布剤の導入による農薬散布に移行して散布剤も低減となった。そのため、対策に対するニーズだけでなく、生産者自身の散布回数の削減とともに薬剤作業の環境化と低コスト技術の確立が求められた。そこで、筆者は薬剤散布の変更を農薬散布体系を構築するためには伝染源を効率的に排除することが最も効果的であると考えた。本発表にあたり散布源については、既に数多くの研究結果が報告されている（箇所、1958；三浦ら、1975；栗山、1982）とし、これらが報告された時期と現状においては散布の生産・管理状況が大きく異っている。そこで、秋田県における伝染源の把握と、伝染源対策、さらに現状における伝染源排除による減農薬防除の試験証実証を行いため、試験結果を得たのでここに報告する。

なお、技術確立のための一連の調査は本県の農業試験場での生態研究発病予察等の技術者、さらに病害害虫防除等の協力により実施されたものである。

Ⅰ 伝染源の所在

1 稲残渣から本田への伝染

乾燥状態で冬を越した稲穂をマルチとして使用した野菜畑に栽培する米作では早期に収穫が完了し、その後の散布効果が期待されている。そこで1995年に、水田栽培に改めて稲穂を散布されているスイカ畑周辺の水田での収穫の発病状況を調査しReduction in Fungicide Use for Rice Blast Disease Control by Eliminating Infection Source. By Tomio Fucaya

キーワード：イネいもち病、伝染源排除、減農薬防除

た。調査は全県被発生開始期の8日後の7月3日に各水田100 mの範囲を基準（小林、1986）で行った。当年度の全県発病開始期は6月19日の病害好適な気温条件によりもたらされ、一般水田での病害密度は10以上と10個以下であった。しかし、スイカ畑周辺では病害の状況から6月19日に感染した病斑のほかに、6月24日ごろに感染したと思われる病斑がおおむね単調の割合で確認された。これら水田の10個以上の病害密度は一般水田よりも高く100～500個以上と推定され、スイカ畑に近いほど病害密度が高かった（浪谷、1996）。調査期間

から約3km離れた水田に設置している微気象観測装置では、6月24日および7月のみが少なく微気象学的条件（小林、1984）から基礎、その他の日は風速が強く海岸から外れていた。このことから、風が弱く気温が高く、しかも微気象学的条件が確保されれば伝染が起こり、稲穂を捕食した稲から伝染は10～20haに及ぶものと考えられる。当地では1回目の伝染が全発生開始期をもたらす感染状態を重視したが、気象条件では通常よりも1サイクル早い時期に伝染が起こる場合があり、過去にこれが多発の原因になったことを示唆する現象も観察されている。

このように早くから伝染が起こる場合の対策としては、プロペラノゾル散布の10個以上14kgの6月上旬と下旬の2回散布が効果的であることを確認している（未発表）。

秋田県における稲稲の活用場面はスイカ畑やミョウガ畑に限られており、これらからの影響は病害の発生にとどまっている。したがって、その年の詳細現在における全県規模の全発生開始期の早さやこの時期の病害密度の高低に限らされることが考えられる。

なお、稲穂内の散布は散布前に散布を放置した稲残渣内では冬期間にいち早く病害が不活性化して翌年の伝染源になるのではと考えており、三浦ら（1975）、筆者らも秋田県において同様の現象を確認している。

2 育苗施設での苗の発病状況

育苗施設から本田への発病状況の把握が病害の早期発現をもたらす伝染源になり得ることを明らかにするため、1997年に全県域において得苗施設の稲苗の病害状況を調査した。1997年1月1日時点において、全県の稲苗の場合当10である2～3当10地点、合計20地点の育苗施設から採取