温水点滅処理によるナシ白紋羽病罹病樹の治療

はじめに

白紋羽病菌（Rosellinia necatrix）は長期間土壌中で生存する土壌病原菌で（Garrett, 1970），永久性作物である果樹類に深刻な被害を及ぼす。白紋羽病に対してはアルシジンウオフリン処理の効果が高く，2009年現在，ナシやリンゴ，ブドウ，モモ，イチジク等に登録を有する。しかし，アルシジンウオフリン処理も処理しても長期的には再発する事例が多く（口江ら，2008，隔年での処理を推奨している。現在のところ，一部に効果的な防除手段はなく，十分な防除対策が講じることが難しい。長期的な防除体積を構築するために，新たな防除手段が創探されている。

白紋羽病菌の高温耐性が低いことは試験的に知られており，苗木の温湯消毒や，海外では土壌消毒法として太陽熱処理が試みられている（松尾・桝井，1954；Freeman et al., 1990）。筆者らは苗木消毒や土壌消毒ではなく，罹病樹の治療の手段として温水の利用を試み，技術開発に取組んできた。また，この罹病樹に対する温熱療法を温水処理に近づかえて「温水処理」と命名した。ここでは「温水処理」の具体的な方法と，実施した場合の防除効果を紹介する。なお，この試験は「新たな果樹果病管理の実用化技術開発事業（平成18～20年）」の助成を受けて実施された。

Ⅰ 温水処理の条件設定

白紋羽病菌の死滅温度やナシ樹の高温防歯の詳細はEccles et al.（2008）の報告があるが，ここではその概要を紹介する。白紋羽病菌は地表上において30℃を超えると生育阻害を受け，32.5℃，5日間の培養で6株株中5株株が死亡した。温水処理では35℃，2日間で著しいダメージを受け，3日間で全部株が死亡した。処理温度の上昇に伴い死滅時間は指数的に減少し，40℃では5時間で，45℃では30分で全株が死滅した（図-1）。一方，ナシの合木に用いるホクシママナシの根に対しても温湯中で温度処理を行い，活性の指標としてバークリナー試験を行い，45℃で12時間処理しても活性が低下しなかった（図-2）、「温水」ボタット菌の試験では休眠期と生育期いずれも高温度性は47.5℃から確認された。

以上の結果により，地温を35～45℃に維持することで，樹にダメージを与えない根部の白紋羽病菌を応激治療できると考えられた。地温をこの温度域に維持するため，様々な処理温度，処理法を検討した結果，50℃の温水を地表面から点滅処理するのが効果的であった。点滅温度である50℃は根がダメージを受ける温度を超えるが，地表面から点減するため，根が45℃以上の高温に遭遇する危険性は極めて低い。

Ⅱ 温水処理の方法

これまで温水処理の方法として50℃の温水点滅処理