水稲の穂枯症状について
—細菌性病害—
農業環境技術研究所

はじめに
1980年代に西日本を中心に稗田で発生したインネもみ枯病菌（以下、もみ枯病菌、図1①）も、90年代にはもみ枯病（如き鉢鉄生じて紅腐病害に、本田で発生する発病類をもみ枯病と称す）の発生は少なくな、最近ではあまり見ることがないという研究者が多いようである。このような状況であるため、もともと本病の発生が少なかった地域では、もみ枯病はもはや「ままろしの病害」となっているかもしれない。

このような「ままろしの病害」は、地域によってはもみ枯病菌以外にもあると思われるが、それではこれらも病害が将来全く問題にならないかというと単純でははないと考える。なぜなら、病害が栽培体系の変更などに伴って発生したりしなかったりすることは経験的にも知られているし、最近取り組みが盛んなIPM（ Integrated Pest Management ）でなくから特定病害を抑制することによる二次病害（感染していなかった他の病害）の発生が指摘されているからである（対馬、2001）。最近、世界中に注目されている地球温暖化や気候変動、高齢化がもたらす病原菌によるもみ枯病菌（図1②）やイネ内堀病変（図1③）などの発生に影響を及ぼす可能性はあろう。

もみ枯病菌の大発生が確かに1990年以降が少なくなったり、この間も筆者のところでは、いくつかの病原から、平均的の水田でももみ枯病が発生しているという情報をいただった。本病の発生状態を考えると、局地的発生でも栽培上の発生が認められる場合、それらが伝播源となっって大きな発生を起こす可能性は否定できない。

したがって、現在のところ少発生の病害であっても、日ごろから発生状況を正確にモニタリングしておくことや、必要に応じて正確に診断できるようにしておくことが重要と考える。しかし、穂枯症は多数の病原菌によっって引き起こされることが多い（穂枯症状病害、1990），慣れていない人の場合、誤診が起きる可能性がある。例えば、いちじるしによる発病をもみ枯病菌（図1①）をもみ枯病菌（図1①A）と誤診したり、逆に典型的なもみ枯病菌の症状（図1①A）でも他の病害と誤診することはあるのではないであろうか。そのうえ、発病のみに強風の影響などが加わると、さらに診断は難しくなるであろう（図1②；長谷川、私信）。

以上のことから、ここでは特に診断が難しいと思われるものも枯病菌を中心として、他の穂枯病（内堀病変など）と発病部位、病巣の色、進展方向等を比較しながら、これら穂枯病菌の識別方法について整理したい。

Ⅰ イネもみ枯細菌病とイネ内堀病変との病徵の比較

1 病徵発現部位

表1-1は、文献情報を基に、もみ枯細菌病と内堀病変病との発病部位の違いを示したものです。参考までに、もみの部位の名称を図1-1に示した。イネでは、小穂は一つの穂（外穂と内穂をあわせたもの）をもち、この小穂が特に穂軸から呼ばれる。穂花は、内穂・外穂・穂軸・小穂軸からなる（内部に穂、柱頭、子房、腋芽がある）。また、発病部位に関しては、参考のために、イネもみ枯病との比較も載せた。この結果、表1-1でわかるように、内堀病変は、その名のとおり主に内穂に症状を現し、時に外穂や、まれに腋芽にも症状が見られるものの、外穂・柱頭・腋芽が発病することは少ない（吉田ら、1982）。また小穂軸にも症状は少ない（長谷川、私信）。これに対して、もみ枯病は外穂のほかに腋芽、小穂軸に病巣が現れる特徴がある。さらに、穂軸に穂花が現れる特徴もある（後藤・大畑、1958；内藤、1990）。このように、もみ枯細菌病は内堀病変よりも多くの部位に発病を発現する。なお、もみ枯症も「もみの病」が発現することがある（栗原、1958）ので、内堀のみが変色しているからといって、直ちに内堀病変とは必ずしも言えないことも留意しておく必要がある。

なお、穂軸、穂軸、維管束等で発病する点がこれら二つの細菌病と明らかに異なる。加えて育種深くことに、「もしも発病部位は内穂より外穂に多く、中でもふ毛付近から発病する例が多い」（山中・山口、1987）とあり、もしも病原菌が内穂より外穂を好む点も二つの細菌病と異なるようである。